基于MYO臂環的假肢手控制技術研究
本文選題:表面肌電信號 + 模式識別 ; 參考:《上海師范大學》2017年碩士論文
【摘要】:表面肌電信號(surface electromyography,sEMG)是人體肌肉收縮時產生的生物電信號。隨著國內外學者的不懈努力,sEMG已經被廣泛應用于臨床檢測、康復工程以及假肢手控制等領域中。目前,基于sEMG的假肢手控制技術已然成為研究的熱點。與傳統傳感器相比,MYO臂環具有不受場地限制、交互自然、穿戴方便以及性價比高等優點,非常適合用來控制假肢手。所以,本文的目的在于研究一種基于MYO臂環的肌電假肢手控制技術,通過算法實現對人手動作模式識別和人手抓取力的預測,并結合在PC端開發的假肢手肌電控制系統進行驗證。本文主要研究工作如下:(1)人手動作模式識別研究。本實驗采用六階巴特沃斯帶通濾波器對MYO臂環采集的sEMG進行預處理,并提取5種時域特征,采用PCA和BP神經網絡相結合的方法對人手動作模式進行分類。實驗結果表明,運用PCA將特征樣本映射到20維時,人手動作模式的識別率可達99%。(2)人手抓取力預測技術研究。本實驗選取絕對平均值(MAV)和均方根(RMS)作為特征,以抓取力的八個檔次為輸出,建立了基于BP神經網絡的抓取力預測模型。實驗結果表明,確定抓取力按照大小分檔的平均識別率達到了93.83%,能夠滿足假肢手控制的基本要求。(3)假肢手肌電控制系統設計。設計了一套基于MFC的肌電控制系統,該系統能夠采集并分析sEMG,進而獲取人手動作模式的活動意圖,且對手指抓取力進行實時預測,經串口對假肢手進行驅動控制。最終,應用該系統驗證了本課題方案的可行性。該肌電控制系統根據sEMG實現人手動作模式的實時分類和抓取力的實時預測。所提取的手部動作意圖和抓取力可轉換成不同的控制命令,能夠提供一種有效的基于生物電信號的人機交互模式。該系統主要創新性的工作在于將高性價比MYO臂環應用到假肢手的控制中,實現了人手動作模式和抓取力的在線控制,在線平均識別率可達92%。而且,該系統安裝和使用方便、抗干擾能力強以及具有很高的可控性,可以很好地滿足殘疾人對假肢手控制的需求。
[Abstract]:Surface electromyography (EMG) is a bioelectric signal produced when human muscles contract. With the unremitting efforts of scholars at home and abroad, SEMG has been widely used in clinical detection, rehabilitation engineering and prosthetic hand control. At present, the control technology of prosthetic hand based on SEMG has become a hot spot. Compared with traditional sensors, MYO arm ring has the advantages of no limitation of site, natural interaction, easy to wear and high cost performance, so it is very suitable for the control of prosthetic hand. Therefore, the purpose of this paper is to study a myoelectric prosthetic hand control technology based on MYO arm ring. The EMG control system of prosthetic hand was developed on PC. The main work of this paper is as follows: 1. In this experiment, the sixth order Butterworth band-pass filter is used to preprocess the SEMG collected by MYO arm ring, and five time domain features are extracted, and the manual action pattern is classified by PCA and BP neural network. The experimental results show that when PCA is used to map feature samples to 20 dimensions, the recognition rate of manual action pattern can reach 99%. In this experiment, the absolute mean value (MAV) and RMS (mean square root) are selected as the characteristics, and the prediction model of grab force based on BP neural network is established with eight grades of grab force as the output. The experimental results show that the average recognition rate of grasping force is 93.833.It can meet the basic requirements of prosthetic hand control. A set of electromyoelectric control system based on MFC is designed. The system can collect and analyze sEMG, and then obtain the active intention of the manual movement mode, and predict the finger grasping force in real time, and carry on the drive control to the prosthetic hand through the serial port. Finally, the feasibility of the project is verified by using the system. According to SEMG, the EMG realizes the real-time classification of manual action mode and the real-time prediction of grasping force. The extracted hand motion intention and grip force can be converted into different control commands, which can provide an effective human-computer interaction mode based on bioelectric signals. The main innovative work of this system is to apply the MYO arm ring with high performance to price ratio in the control of prosthetic hand. The on-line control of manual movement mode and grip force is realized, and the on-line average recognition rate can reach 92%. Moreover, the system is easy to install and use, has strong anti-interference ability and has a high controllability, which can meet the needs of the disabled in the control of prosthetic hands.
【學位授予單位】:上海師范大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:R496;TP273
【參考文獻】
相關期刊論文 前8條
1 卜峰;李傳江;陳佳佳;李歡;郭偉海;;基于ARM的肌電假肢手控制器[J];上海大學學報(自然科學版);2014年04期
2 丁其川;趙新剛;韓建達;;基于肌電信號的上肢多關節連續運動估計[J];機器人;2014年04期
3 黃鵬程;楊慶華;鮑官軍;張立彬;;基于幅值立方和BP神經網絡的表面肌電信號特征提取算法[J];中國機械工程;2012年11期
4 楊大鵬;趙京東;姜力;劉宏;;多抓取模式下人手握力的肌電回歸方法[J];哈爾濱工業大學學報;2012年01期
5 王新慶;劉伊威;楊大鵬;樊紹巍;劉宏;;基于EMG的假手實時力跟蹤控制[J];沈陽工業大學學報;2012年01期
6 谷秀川;呂廣明;;基于小波變換的肌電信號的多尺度分解[J];數學的實踐與認識;2010年24期
7 李媛媛;陳香;張旭;楊基海;;基于ART2神經網絡的手勢動作肌電信號識別[J];中國科學技術大學學報;2010年08期
8 尹少華;楊基海;梁政;陳香;任焱暄;;基于遞歸量化分析的表面肌電特征提取和分類[J];中國科學技術大學學報;2006年05期
相關博士學位論文 前3條
1 王新慶;基于肌電信號的仿人型假手及其抓取力控制的研究[D];哈爾濱工業大學;2012年
2 宋全軍;人機接觸交互中人體肘關節運動意圖與力矩估計[D];中國科學技術大學;2007年
3 劉建成;模糊模型的智能學習方法與應用研究[D];中南大學;2005年
相關碩士學位論文 前2條
1 陳棟金;機器人多指手的力規劃及其同步協調控制[D];哈爾濱工業大學;2012年
2 時改杰;動作表面肌電信號的特征提取方法研究[D];上海交通大學;2008年
,本文編號:2019679
本文鏈接:http://www.malleg.cn/kejilunwen/zidonghuakongzhilunwen/2019679.html

